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ON THE ASYMPTOTIC CONE OF GROUPS
SATISFYING A QUADRATIC
ISOPERIMETRIC INEQUALITY

P. PAPASOGLU

Abstract

‘We prove that the asymptotic cone of a group satisfying a quadratic isoperi-
metric inequality is simply connected.

0. Introduction

The asymptotic cone of a group was introduced in [3], where it was
used to prove that a group of polynomial growth is virtually nilpotent.
It turns out that the group of isometries of the asymptoptic cone of a
group of polynomial growth is a Lie group and plays a crucial role in
Gromov’s proof.

In [1] the construction of the asymptotic cone was generalized to
arbitrary finitely generated groups. A complication appears in this case
as one has to use ultrafilters in the definition, and it is not clear if the
cone depends on the ultrafilter chosen. Because of this sometimes we
will refer to all the asymptotic cones of a group as it is not known if this
cone is unique. When on the other hand we speak of ‘the’ asymptotic
cone of a group we mean that a specific ultrafilter has been fixed. It
is known in many cases (e.g. for hyperbolic groups) that the cone is in
fact independent of the ultrafilter .

In [5] Gromov relates the asymptotic cone of a group to the isoperi-
metric inequalities satisfied by the group. He proves that if every asymp-
totic cone of a group is simply connected, then the group satisfies a
polynomial isoperimetric inequality. A more detailed exposition of this
important result has been given by Drutu in [2]. Examples of groups
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790 P. PAPASOGLU

with simply connected asymptotic cones are nilpotent groups (see [7]),
hyperbolic groups (in which case the asymptotic cone is an R-tree) ,
certain solvable groups (see [4]) and combable groups . Gromov in [4]
conjectures that the asymptotic cone of SL,(Z), n > 3 is simply con-
nected.

Recently Kapovich and Leeb [5] have used the asymptotic cone of a
group to prove that certain groups are not quasiisometric.

Gromov conjectured in [4] that every asymptotic cone of a group
satisfying a quadratic isoperimetric inequality is simply connected. In
[4] this problem is reduced to proving that groups satisfying a quadratic
isoperimetric inequality have a certain metric property. We formulate
here (in a slightly different form) Gromov’s metric condition:

Let G =< S|R > be a finitely presented group and let I's(G) be the
Cayley graph of G. Let C be a closed path in I's(G). We think of C as
amap f: 8! —= I's(G), ' ¢ R?, and S! is the boundary of a disc D.
A collection of discs Dy, ..., Dy is a partition of D if D = D1 U ...U D,
andDiﬂDj=(9DiﬂaD]',15i,j_<_p. _

A partition of C, which we denote by II, is a map extending f to
0D;, 1 <1 < p where Dy, ..., D, is a partition of D as above. We define
the mesh of II by

mesh(Il) = mag {length(I1(0D;)}.
<i<p

Gromov in [4] shows that if there is a k such that every sufficiently
long simple closed path C in I's(G) can be partitioned into &k ”pieces”
such that the mesh of the partition is less than length(C)/2, then every
asymptotic cone of G is simply connected. Indeed such a partition
induces a similar partition of simple closed curves in each asymptotic
cone, and using the fact that an asymptotic cone is a complete metric
space (see [1]) one easily sees that every asymptotic cone of G is simply
connected. In section 1 we explain this in detail.

In the rest of the paper we show that if G satisfies a quadratic isoperi-
metric inequality such partitions do exist. In the proof we consider a
minimal van Kampen diagram corresponding to a curve in I'g(G). We
first show (sec. 2) that "thin” diagrams can be partitioned, and then
(sec. 3) we slice "thick” diagrams into a bounded number of "thin” di-
agrams by moving the boundary of the diagram in the normal direction
(see Figure 1).
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FIGURE 1

1. Preliminaries

We recall some definitions from [4] : A non-principal ultrafilter is a
finitely additive measure w defined on all subsets A C N, such that

1. w(A) equals O or 1 for all A CN,
2. w(A) equals 0 for all finite subsets A C N.

Given a bounded function ¢ : N — R the (ultra)limit of ¢ with respect
to w denoted by ¢(w) is the unique real number satisfying the following
condition: for every € > 0 the subset 7 C N where ¢ is e-close to ¢(w),
ie.,

I={ieN:|¢(i) - ()| < e},

has w(f) = 1.

Let now X be a metric space. We fix zyp € X and consider the set
of maeps f : N = X such that d(f(i),z0) < csi for all 4, where c; is
a constant. We define the distance of any two such functions fj, f» by
d(f1, f2) = ¢(w) where ¢(i) = %d(fl (2), f2(7)), and w refers to a chosen
non-principal ultrafilter. We define an equivalence relation: f; = fo if
and only if d(f1, f2) = 0. Dividing the set of maps by this equivalence
relation we get a metric space called the asymptotic w-cone of X and
denoted by Con, X. We have now the following (see also [1)):

Proposition. Con, X is complete for every ultrafilter w.

Proof. Let f, be a Cauchy sequence in Con, X. We define

Ax = (i 15d(70(0), f0) =~ d(fs, SOl < 1/K, 1S s, SR}
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Clearly Axy1 C A and w(Ag) = 1 for all k. We define &£(z) = sup{k :
i € Ay} if the supremum is not co. Otherwise we define k(i) = 4. Let f
be given by:
" F(@) = fi) (9

It is clear that f = lim, o fn. q.e.d.

Proposition. If X is a geodesic metric space, then Con, X is a
geodesic metric space for every ultrafilter w.

Proof. Let f,g € Con, X. Let ¢; : [0,1] = X be geodesic arcs
parametrised proportionally to the arc length such that ¢;(0) = f(4),
ci(1) = g(z). We define

c:[0,1] = Con, X

by c(t) = {c:(t)}. It is clear that c¢(0) = f, ¢(1) = g and that c is a
geodesic segment.  q.e.d.

Definitions. An n-gon S in X is a map from the set of vertices of
the standard regular n-gon in the plane into X. We denote the standard
regular n-gon by S,. We call the edges or sides of S the pairs of points
in X corresponding to the pairs of vertices in S, joined by edges. The
length of an edge is the distance between the corresponding points. The
length of S is the sum of the lengths of its edges. A partition of S, is
a collection of discs Dj,..., Dy such that S, = 8(D; U ... U Di) and
D;NDj =08D;NdD; when i # j. We call a point p on D1 U ...U3D;
a branching point of the partition if for all open sets U containing p,
UN (8D, U ...U 3Dy) is not homeomorphic to an interval. We call a’
point a vertex of the partition if it is either a vertex of S,, or a branching
point. A partition of S is a map II from the set of vertices of a partition
of S, to X taking the vertices of S, to S. We call vertices of II the
points in X corresponding to the vertices of the partition of S,,, and
edges of II the pairs of vertices corresponding to the adjacent vertices
of the partition of §,. If X is a geodesic metric space we can extend
IT to 8D U ... U 8Dy by mapping the arcs between adjacent vertices of
the partition of S;, to the geodesics joining the points corresponding to
those vertices in X. We define the mesh of II by

mesh(Il) = 177<7.{1<xk{length(1'[(8Di)}.

Lemma. A partition D, ...,Dy of S, has less than or equal to
n + 2k — 2 vertices.
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Proof. We see the partition as a planar graph. Let e be the number
of edges of this graph and let v be the number of its vertices. If v; is
the number of vertices corresponding to the branching points, we see
that e > 3—’2’1, while v < v; + n. Using Euler’s formula we see that
v<n+2k-2. qed

We call two partitions I1;, Il of an n-gon S equivalent if there is an
edge preserving map f from the vertices of II; onto the vertices of I,
fixing the vertices of S. f oIl; is then a partition of S having the same
vertices and the same mesh as IIy. It is clear that there are finitely many
equivalence classes of partitions of S having a fixed number of vertices.
In fact, for any k,n there is a finite set T} ,, of partitions of S, into k
discs such that for any partition of an n-gon S in X into & pieces there
is a partition with the same vertices and mesh defined using a partition
of Sy, lying in T .

Proposition. Let X be a metric space. Suppose that for some k
every sufficiently long polygon S in X can be partitioned into k pieces
of length less than or equal to length(S)/2. Then every polygon P in
Cony(X) can be partitioned into k pieces of length less than or equal to
length(P)/2.

Proof. Let P = (P,...P,) be an n-gon in Con,(X). Let P§, ..., P: be
sequences in X converging (with respect to w) to Py, ..., Pp. There is a
subset of N with w measure 1 such that for all 1 in this set, the polygons
Q; = (P!...P}) can be partitioned into k pieces of length less than or
equal to length(Q;)/2. From the remarks preceding the proposition it
follows that there is a set A C N with w(A) = 1 and a partition of
S, = (81...8,) with r vertices Ay, ..., A, ,where r < n + 2k — 2, such
that for each 7 € A there is a partition IT; of J; with r vertices and with
mesh(Il;) < length(Q;)/2 defined using the given partition of S, and
such that I1;(Sj) = P, j = 1,...,n. We define now a partition II of P
using the same partition of S, by I1(4;) = {II;(4;}. Since w(4) =1
this is well defined. It is clear that mesh(Il) < length(P)/2. q.ed.

Proposition. Let X be a complete metric space. Assume that there
is a k such that every n-gon S in X has a partition I with k pieces such
that mesh(Il) < length(S)/2. Then X is simply connected.

Proof. Let f:S!' = 0D — X. We will show how to extend f to
f: D — X. Let S, be a sequence of regular 2"-gons inscribed in S*
and such that the vertices of S,, are a subset of the vertices of S, for
all n. Let P, be the images of S, under f. Let II, be a sequence of
partitions of P, corresponding to finer and finer partitions D,ll, ., DI
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of S, such that mesh(Il;) < 1/2" and where each disc D}, ...,D%” is
partitioned in exactly k& pieces in the (n + 1)st partition (note that Sy,
is contained in Sp4+1). We have the following lemma.

Lemma. Let x be a vertez of the (n+1)st partition of S, lying in
D}, and let y be a vertex of D},. Then d(Il,11(z), ny1(y)) < k/27H1

Proof. A simple path consisting of edges of the partition II,4

joining II,11(z) to II,+1(y) has at most k vertices and each edge has
length less than 1/2"*1,  q.e.d.

Let z € D\ 8D. Let z € D@ where DX is a disc in the domain
of P, (this makes sense when n is sufficiently large). Let z,, be a vertex
of DX®). We then define F(z) = limn_0olIn(zs). The previous lemma
implies that II,,(z,) is a Cauchy sequence; therefore the limit exists. By
the same lemma we see that the limit is independent of the choice of
z,. We will show that f is a continuous extension of f. We distinguish
two cases:

Case 1. Let x € D\ 8D. Let € > 0 be given, and n be such that
z lies in the interior of S, and k/2"! < €. Let U be an open ball
around z contained in the union of discs in the partition of S,, which
contain & . Then the previous lemma and the definition of f imply that
d(f(z), f(y)) <e for ally €U, i.e., f is continuous at z.

Case 2. Let x € 8D. Let ¢ > 0 be given, and n be such that
k/2™ < €/2, and let U be an open ball around z such that for all
y € UNOD, d(f(z), f(y)) < €/2. Assume moreover that U intersects
only the discs of the partition of S,, that contain z. Clearly for ally € U
we have d(f(z), f(y)) < €, and therefore f is continuous at z.  q.e.d.

2. Thin diagrams

Definitions. We recall the definition of a van Kampen diagram
from [6). A map is a finite, planar, connected and simply connected
2-complex. A diagram D over an alphabet S is a map such that every
edge (i.e., 1-cell) e is provided with a label ¢(e) € S such that ¢(e)™! =
#(e™*). The label of a path p = ejes...e, is the word ¢(e1)p(ez)...d(en)-
Call a diagram D over S a van Kampen diagram over the group G given
by a presentation < S|R > if the label of the boundary path of every
face (i.e., 2-cell) of D is a cyclic permutation of some relator r*! € R.
The length, [(p), of a path p in a diagram is equal to the number of
edges of the path. The boundary of a van Kampen diagram D, denoted
by 8D, is a closed path of minimal length which contains all the edges
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of D not lying in the interior of D. Note that our definition is slightly
more general than the one given in [6], namely, we do not require that
the label of the boundary of D is a reduced word. For example a path p
labelled by a word w can be considered also as a van Kampen diagram
having as boundary label ww™. This more general definition of van
Kampen diagrams does not cause any problems and is more convenient
for our purpose.

Let w be a word in the alphabet S. Then w represents the identity
in G if and only if there is a van Kampen diagram over G such that w
is the boundary label of D. A minimal van Kampen diagram for a word
w is a van Kampen diagram with boundary label w and the minimum
possible number of faces. The area of a word w, A(w), is the area of a
minimal van Kampen diagram D with boundary label w which is, by
definition, the number of faces (2-cells) of D.

The length, [{w), of a word w is the number of letters in the word.
We denote by K the closure of a subcomplex K of D . We define
star(K) to be the set of all closed cells which intersect K, and denote by
star;(K) the subcomplex of D obtained by iterating the star operation
1 times. If P is a vertex of D, we define the ball of radius r and center
P to be: Bp(r) = star,(P). Note that for every vertex Q@ € Bp(r),
d(P,Q) < r. We define the sphere of radius r around P to be Sp(r) =
D — Bp(r) N Bp(r), and the distance, d(P,Q), between two vertices
P,Q on D to be the length of the shortest path in D joining them. If
P,Q are on 9D we define ds(P, Q) to be the length of the shortest path
on 9D joining them.

We define the radius of a van Kampen diagram D to be
r(D) = maz{d(z,dD) : z is a vertex of D}. Let D be a van Kampen di-
agram, and 8D be its boundary. Let f : S' — 8D be a parametrization
of 8D with respect to the arc length, where S! is the circle of length
[ =1(8D). If t1,to € S* we denote by %3 the arc of S! having as initial
point ¢; and as terminal point ¢, if we orient S! in the counterclockwise
direction. f(fif2) is then a subpath of 8D with endpoints f(¢1), f(¢2).
If P = f(t1),Q = f(t2) are two vertices of 8D, we will abuse nota-
tion and write PQ instead of f(Z1%3). So PQ is an oriented subpath of
AD with initial vertex P and terminal vertex @ if we orient 8D in the
counterclockwise direction. Note that if D intersects itself, PQ is not
always well defined. If either P or @ is point of self-intersection of 4D,
there is more than one path satisfying the definition of PQ. In such
situations when we write PQ it means that we choose arbitrarily any
of the oriented paths with initial point P and terminal point ¢). Note
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however that as soon as we choose a path PQ, the path QP is well
defined: it is the complement path of PQ (i.e., PQUQP = D). In the
rest of the paper we will follow this convention.

Given a finite presentation < S|R > of a group G we can ‘triangu-
late’ it as follows: If some r € R has length more than 3, then r = ab for
some words a, b of length more than 1. Introduce a new generator = and
observe that < SU{z}|(R — {r}) U {za~!,zb} > is also a presentation
of G. Repeating this step finitely many times we arrive at a triangular
presentation of G, i.e., a presentation in which every relator has length
at most 3.

Proposition. Let D be a van Kampen diagram with r(D) < [(0D)/25.
Let m € Nym > 0, be such that 7(D) < m < (8D)/25. Then D =
D, UD;, where Dy, Dy are van-Kampen diagrams, D1 N Dy is a simple
path, and

1. 1(8D1) < 25m,
2. 1(dDs) < 1(dD) — m.

Proof.
Lemma. Let D be a van Kampen diagram. Let P, Q) be vertices on
OD and let o be a simple path on DY) joining them with

l(@) < min(PQ,QP) — m.

Then « induces a partition of D in two van Kampen diagrams D1, Do
such that: D = D1UD>, DiNDy = o and l(aDl) < l(aD)—m, 1=1,2.

Proof. Indeed if D, is the subdiagram of D with boundary o U PQ,
and Dy is the subdiagram of D with boundary o U QP, we have D =
DyUDy, DiNDy=cqand l(aDz) < l(aD) —-m,i1=1,2. q.e.d.

We return now to the proof of the proposition. We distinguish 2 cases:

Case 1. Suppose that for every vertex P in 0D there is a simple path
« in DU with initial vertex P and [(a) < 4m separating D in two van
Kampen diagrams D;, Dy such that {(8D;) < 1(0D) —m, i=1,2.

We claim that under this hypothesis the proposition is true. Among
all simple paths of length less or equal to 4m separating D in D, Do
such that /[(0D;) < I(8D) — m, i = 1,2 we pick a path a for which
[(0D,) attains its minimal value. If [(dD;) < 25m the partition of
D in D1, Dy by « satisfies the requirements of the above proposition
and we are done. We assume therefore that {(0D;) > 26m. We have
0D, = PQU a, where P,(Q are the endpoints of & and PQ is a subpath
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of D. Since I(a) < 4m we have [(PQ) > 21m. Therefore there is a
point Q; € PQ with [(PQ;) = 13m. By the hypothesis of case 1 there
is a path § with initial vertex @Q; and [(3) < 4m separating D in two
diagrams D}, D/, such that

1&D)) <U(BD) —m, i=1,2.

By our minimality assumption for o the endpoint of 8 does not lie on
PQ hence (3 intersects a at a point Q5. Therefore

Then a geodesic path v joining P to Q; separates D into two diagrams
Dy, D,” which by the above lemma satisfy the inequalities {(8D;") <
(D) —m, i = 1,2. Moreover the boundary of one of the two diagrams,
say D1”, is yU PQ;. Therefore [(0D,”) < 2lm < 25m, i.e., D1”, Dy”
give the required partition in this case.

Case 2. We assume that the assumption of case 1 is not valid, i.e.,
we assume that there is a vertex P € 0D such that there is no simple
path a with a(0) = P and l(a) < 4m separating D in two diagrams
Dy, Dy with [(0D;) < (D) —m, i = 1,2. We will show that in this
case the proposition is also true.

We consider B = Bp(3m). Suppose that there is Q € B N 3D such
that min(PQ,QP) > 4m. If a is the geodesic path joining P to Q,
then we have [{a) < 3m and by the above lemma « separates D in two
diagrams Dy, Dy with {(0D;) < I(8D)—m, i = 1,2 which contradicts the
hypothesis of case 2. Therefore for all Q € BN 3D either [(PQ) < 4m
or [(QP) < 4m. Hence there are vertices P, P, € Sp(3m) N 8D such
that the following hold:

1. I(P.P) < 4m, I(PP;) < 4m.

2. For all Q € BN AD with [(QP) < 4m we have_QjD" C PP, and
for all Q € BN D with I[(PQ) < 4m we have PQ C PP;.

Clearly 6m < I[(P,P,) < 8m. Let p be a path in Sp(3m) connecting
P, to P,. To see that there is such a path consider the connected
component of D — B containing P1P;. Let C be the closure of this
connected component. Then C is a van Kampen diagram and 9C =
PP, Up where p is a simple path in Sp(3m) connecting P; to Ps.

For every vertex Q € p we pick Q° € 9D such that d(Q,Q°%) =
d(Q,dD). By our hypothesis that (D) < m we have d(Q,Q°) < m.

797
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FIGURE 2

Since d(P,Q) = 3m, 4m > d(P,Q°) > 2m. We claim that for all Q°,
min(l(PQY),1(Q°P)) < 5m. Indeed if for some Q° this is not true, it
follows from the inequalities and the above lemma that the geodesic
path joining P to Q° separates D in two van Kampen diagrams Dy, D,
with [(0D;) < I(8D) — m, i = 1,2 which contradicts the hypothesis of
case 2.

Therefore for all Q° we have ds(Q° P1) < 2m or da(Q°, P;) <
2m . Hence there are vertices Q1,Q2 on p with d(Q;,Q2) < 1 and
da(Q?,Pl) < 2m, da(Qg,PZ) < 2m. But then d(Pl,PQ) S 6m+1. On
the other hand 8m > [(P,P,) > 6m. If o is a geodesic path joining P;
to Py,then,by the lemma above, « separates D in two diagrams D;, Ds.
Moreover 8D; = a¢ UP,P; and 8Dy = aUP,P;. Clearly [(8D;) < 25m,
[(0D3) < I(8D) — m. Therefore in this case too there is a partition of
D in D,, D, with the required properties. This finishes the proof of the
proposition. q.e.d.

Corollary. Let D be a van Kampen diagram. Let m > 0 be such
that r(D) < m. Then D = D, U ...U Dy where D;,i = 1,...,k are
subdiagrams of D , D; N D;, (0 < 4,5 < k) is empty or a vertex or a
simple path, 1(8D;) < 25m and k < *2) 11,

Proof. If (0D) < 25m. Then the assertion above is clearly true.
Otherwise it follows by induction on {(8D) using the proposition above.

g.e.d.

3. The general case

Let G be a group given by a triangular presentation < S|R >
satisfying a quadratic isoperimetric inequality A(w) < Ml(w)? where
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FIGURE 3

M € BbbN. We define the filling radius function of G by

f(n) = lm;zéznmin{r(D) |6D = w}.

Note that this definition is slightly different than the one in [4]. Let us
assume that R contains all the words of length less than or equal to 3
which are trivial in G. We have then:

Proposition. f(n) < 12Mn.

Proof. We will prove by induction on n that if D is a minimal van
Kampen diagram for a word of length n, then r(D) < 12Mn. Forn <3
it is obviously true. Let w be a word on S with [(w) = n. Let D be a
minimal van Kampen diagram for w.

We define N; = star;(0D), 1 <1 < 6Mn~1. If ¢; = ON; — 9D, then
A(Nit1) — A(N;) > I(c;)/3. This is because each 1-cell of ¢; lies in the
boundary of a 2-cell in N;41 — N;. I l{¢;) > n/2 for all 1 < ¢ < 6Mn,
then

nl 2
A(D) > §§6Mn > Mn”,
which is impossible. Therefore {(c;) < n/2 for some i, 1 < i < 6Mn.
We note now that ¢; is a union of simple closed curves any two of which
are either disjoint or intersect at exactly one point. Every vertex P of D
either lies in the interior of some simple closed curve of ¢; or is of distance
less than or equal to 6 M from 9D. If P lies in the interior of some simple
closed curve of ¢;, then by the inductive hypothesis d(P,c;) < 6Mn, so
d(P,0D) < 12Mn.

Theorem. There is a k such that for every minimal van Kampen
diagram D of G with [(8(D)) > 200 we have that D = C1U...UCy where
Ciyi = 1,...,k, are van Kampen subdiagrams of D , C;NC},0 < 4,5 < k,

799
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is empty or a vertez or a simple path and 1(0C;) < I(OD)/2 for all
i=1,..,k.

Remark. We show in the proof that we can take k = 120-6003 - AM*
but this is far from the best estimate for %.

Proof.  Let us assume that [(0D) = n. We decompose D into a
union of ‘annuli’:

Let B} = stari(0D) where 1 is such that:

n/200 < i <n/100

and
l(0(star;(0D)) — (0D)) < 600Mn.

Such an ¢ exists because if

[(O(star;(0D)) — (8D)) > 600Mn

for all
n/200 <4 < n/100,
then 1
n
A((starp 100(8D)) > 600Mn s = > Mn?.
We define:
Y] al = Yal T
By = B{U{C|C conn. comp. of D — B; with [(0C) < 1200M}'
Let D; = B;. Let B} = star;(B;) where ¢ is such that
1200 < i < /100
and
1(O(star;(0B1)) — (8D)) < 600Mn.
Let
Y Yal ol Yol n
By = B U{C|C conn. comp. of D — By with [(0C) < 1200M}'

Let Dy = By — B; and inductively:
r41 = stary(By),

where ¢ is such that
n/200 < i <n/100
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FIGURE 4
and
1(8(star;(8B,)) — (8D)) < 600Mn.
Let
Bry1=B., U{C|C conn. comp. of D—B.,, with 1(dC)< -12—0"(%}.

Let Dyy1 = By11 — Br. The sequence terminates when
D =DyUDyU..UDy.
Since r(D) < 12Mn, we have

12M
p< M _os00m.

00

We will show that each ‘annulus’ D,,r = 1, ..., p, can be decomposed
into less than 42 - 10* - M? pieces such that the length of the boundary
of each piece is less than n/2. D, — 8D, _, has length less than 600Mn
and it is a union of simple closed paths. By the definition of D, each
of these simple closed paths has length more than z5577- We conclude
that 8D, — 8D,_1 can be written as a union of at most

600Mn

n
12000\

=72-10*M?

simple closed paths. For each of these paths we pick a (simple) path
of length less than n/100 joining it to 0D, N 0D,_1. We cut D, open
along these paths and get a diagam A, which is a union of van Kampen
diagrams and

1(8A,) < 2-600Mn + 72 - 104 M2 - Tg_o < 14- 600M?2 - n.
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Each connected component of A, has radius less than n/50; there-
fore we can apply the corollary of the previous section to decompose
it to pieces of boundary length less than n/2 . In fact a component
of boundary length [ can be decomposed into less than % + 1 pieces
of boundary length less than n/2. On the other hand each connected
component of A, has length more than 55557 so Ay has at most

14 - 600M?n
20097

= 28 - 600° M3

components. If a component has boundary length less than n/2, then
we leave it as it is; otherwise, we decompose it using the corollary of the
previous section. It is clear that A, can be decomposed into less than
(50 - 14 - 600M? - n)/n + 28 - 6002 M?® < 30 - 600? M3 pieces of boundary
length less than n/2, and therefore D, can be decomposed into less
than 30 - 6002M°3 pieces of boundary length less than n/2. Since D =
D, U...UD,, D can be decomposed into less than

30 - 600203 - 4- 600M = 120 - 600°% - M*

pieces of boundary length less than n/2.

4. A more refined estimate

In this section we refine the results of section 3 proving a stronger
decomposition theorem for van Kampen diagrams for groups satisfying
a quadratic isoperimetric inequality. In what follows we assume as in
section 3 that G is a group given by a triangular presentation < S|R >
satisfying a quadratic isoperimetric inequality A(w) < Ml(w)? and we
consider van Kampen diagrams over G.

Let us denote by M(a) the minimal number such that any van Kam-
pen diagram of length n (where n is large enough) can be decomposed
into M (a) pieces of boundary length less or equal to n/a. Gromov then
conjectures (see [4], 5F) that

log(M(a))

< 2.
log(a) 52

liminfoeo

To see what this says note that one can subdivide a square of side length
1 into 4% equal squares of side length 1/2* in the obvious way. One
can modify the proof of the previous section and prove this conjecture.
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More precisely we will show that there is a K > 0 such that for any
a > 0,a € N one can decompose a minimal van Kampen diagram with
boundary length n > 100a into less than Ka? pieces such that the length
of the boundary of each piece is less than or equal to n/a.

We remark that if all minimal van Kampen diagrams over a group
satisfy this condition, then the group satisfies a quadratic isoperimet-
ric inequality. In particular it is a stronger condition than the simple
connectivity of the asymptotic cone of a group. This clearly implies
Gromov’s conjecture; it shows in fact that

log(M(a))

< 2.
logla) =

1imsupg— o0

The proof is essentially the same as the proof of the theorem in sec.3,
the only difference being that we bound > »_, 1(8D, —8D,_1) by cn for
an appropriate constant ¢ and we think of subdividing all annuli” at
once. We repeat the construction as we now have to keep track of the
dependence of the constants appearing from a.

Let B} = star;(0D) where ¢ is such that:

n/100a < i < n/50a,

and for which {(d(star;(0D)) — (8D)) takes its minimum value. We
define:

n

600aM

By = B, U{C| C conn. comp. of D — Bj with I(0C) < }.
Let D; = By. Let Bl = star;(B;) where 1 is such that
n/100a < i < n/50q,

and for which [(9(star;(0B1)) — (6D)) takes its minimum value. Let

Y] Yol ol Yai 7
By = B, U {C|C conn. comp. of D — By with (0C) < ——————600aM}.
Let Dy = By — By, and inductively:

B;-+1 = stari(Br),

where 7 is such that
n/100a < i < n/50a
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and for which {(9(star;(8B,)) — (8D)) takes its minimum value. Let

— . —_ n
Br41 = B} 1U{C| C conn. comp. of D—B,, with 1(3C) < m}

Let D11 = Byy1 — B,. The sequence terminates when
D =DyUDyU...U Dy.
Since (D) < 12Mn, we have

p< M _ 19000,

We note now that

> |(8D, — 8D,_;) < 300aMn,

r=1

where we take 0Dy = 6D.
Indeed, since by hypothesis A(D) < Mn? and as we have seen ear-
lier, A(star(D,)) — A(D,) > 31(8D,) we have that

p
> U(8D, — 8D,_y)

r=1

1 n 9
— <
31008 =M™

where each term in this sum is a lower bound of the area of an ” annulus”
in D and all these "annuli” are disjoint. Hence

> (8D, — 8D,_1) < 300aMn.

r=1
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We note now that 0D, — dD,_1, r = 1,...,p is a union of simple
closed paths each of which has length at least n/600aM. Using the

previous inequality we conclude that U (BD — 8D,_3) can be written

as a union of less than 3%9¢Mn _ 1g. 1O4M 242 simple closed paths. For

each such closed path I;iorolang 0D, — 0D,_; we pick a simple path of
length less than n/50a joining it to dD,_1 and we cut D, open along
this new simple path. After we do this for each closed path in each D,
we get a collection of van Kampen diagrams A,, n =1, ..., ¢, such that
for every n:

(1) T(An) S '5—63—]177
(2) 1(0An) 2 Gegear
(3) Y21 1(0An) < 18- 10°M?a? - 5l + (300aM + 1)n < Ean,

where F in (3) is an appropriately chosen constant depending only on
M. By (2) and (3) we see that

g < 2% < 600EMa?.
600a M

. . q .
Using the corollary of section 2 we can decompose UlAn into less than
n=

Fan

500.

+ 600EMa? = (50E + 600EM )a?

pieces of boundary length less than n/a.

5. Final remarks

It is easy to see that if every asymptotic cone of a group is simply
connected, then the filling radius grows linearly. Indeed (see [4],[2] ) if
every asymptotic cone of GG is simply connected, then there is a k such
that any minimal van Kampen diagram D of G with {(0D) = n (where
n is large enough) can be decomposed into & pieces such that the length
of the boundary of each piece is less than n/2. Since any vertex of D
is in some such piece, any vertex can be connected to the boundary
of the corresponding piece and then to the boundary of D by a path
contained in the boundary of pieces (see picture). Therefore the filling
radius function of G satisfies:
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which clearly implies that f is bounded by a linear function. This obser-
vation makes it natural to ask: Are there groups satisfying a polynomial
isoperimetric inequality whose filling radius grows faster than linearly?
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